欢迎来到东莞市鸿希玻璃智能科技有限公司官方网站!服务热线:18929456019
鸿希玻璃LOGO
4技术支持
您的位置: 首页 ->  技术支持 -> 微晶玻璃的处理工艺与显微结构

微晶玻璃的处理工艺与显微结构


处理工艺
热处理是使微晶玻璃产生预定结晶相和玻璃相的关键工序。组成确定后,微晶玻璃的结构与性能主要取决于热处理制度(热处理温度与保温时间)。在热处理过程中,玻璃中可能产生分相、晶核形成、晶体生长及二次结晶形成等现象。对于不同种类的微晶玻璃,上述各过程进行的方式也不同。一般可把热处理过程分为两个阶段:第一阶段是玻璃结构的微调及晶核形成,第二阶段为晶体生长。
微晶玻璃的成核与晶体生长通常是在转变温度Tg以上、主晶相熔点以下进行的。一般在相当与10~10Pa·s粘度的温度下保持一定时间来进行核化处理,使母体玻璃中形成一定数量且分布均匀的晶核。对于一些极易析晶的玻璃(如熔体粘度较小、碱金属氧化物含量较多的体系),也可以省去核化阶段而将其直接加热到晶体生长温度,因为这些玻璃在升温过程中就可以完成核化,产生大量晶核。通常,晶体长大温度约高于成核温度150~200℃。
显微结构
微晶玻璃的显微结构主要由组成和热处理工艺所决定,对于微晶玻璃的物理特性如机械强度、断裂韧性、透光性、抗热震性等有很大影响。微晶玻璃的显微结构主要有枝晶结构、超细颗粒、多孔膜、残余结构、积木结构、柱状互锁结构、孤岛结构、片状孪晶等。
枝晶结构是由晶体在某一晶格方向上加速生长造成的。枝晶的总轮廓与通常晶体形貌相似,在枝晶结构中保留了很高比例的残余玻璃相。枝晶在三维方向上连续贯通,形成骨架。由于氢氟酸对亚硅酸锂的侵蚀速度要比铝硅酸盐玻璃相更快,亚硅酸锂枝晶有容易被银感光成核,可将复杂的图案转移到微晶玻璃上。
高度晶化微晶玻璃的晶粒尺寸可以控制在几十纳米以内,得到超细颗粒结构。在锂铝硅透明微晶玻璃中,由于充分核话,基础玻璃中形成大量的钛酸锆晶核,β-石英固溶体晶相在晶核上外延生长,形成平均晶粒尺寸约60nm均匀的超细颗粒结构。由于晶粒尺寸远小于可见光波长,并且β-石英固溶体的双折射率较低,该微晶玻璃透光率很高。
在许多微晶玻璃中,残余玻璃相可以形成多孔膜结构。以β-锂辉石固溶体为主晶相的锂铝硅不透明微晶玻璃中,残余玻璃相中SiO2含量较高,黏度较大,因而能够阻碍铝离子膜网络。因此,锂铝硅微晶玻璃在高温下具有非常好的颗粒稳定性,可以在1200℃的高温下长时间使用。
所谓残余结构式指微晶玻璃如实地保留了基础玻璃中原有的结构。微晶玻璃成核的第一步往往是液-液分相,形成液滴。如在二元铝硅玻璃中,从高硅基质中分离出组成类似于莫来石的高铝液滴。热处理时,高铝液滴晶化成为莫来石微晶体,其外形继承了母体液滴的球形外貌。由于微晶体尺寸很小,只有几十纳米,尽管莫来石与硅质玻璃之间的折射率相差较大,对可见光的散射很小,是一种透明微晶玻璃。
云母类硅酸盐矿物在二维方向上结晶能够产生一种互锁的积木结构,是可切削微晶玻璃的典型显微结构。由于云母晶相较软,而且能使切削工具尖端引起的裂纹钝化、偏转和分支而产生碎片剥落,不会产生灾难性破坏,因此即使晶相体积分数仅40%也具有良好的可切削性,此外,云母相的连续性也使此类微晶玻璃具有很高的电阻率和介电强度。
具有柱状或针状互锁显微结构的微晶玻璃具有最高的机械强度和断裂韧性。以钾氟碱锰闪石为主晶相的闪石微晶玻璃的显微玻璃的显微照片。柱状互锁显微结构具有类似于晶须补强陶瓷中晶须随机排列的结构特征。这种微晶玻璃的弯曲强度达150Mpa,断裂韧性大(3.2±0.2)Mpa·m。以链状硅酸盐矿物氟硅碱钙石为主晶相、晶化程度更高的氟硅碱钙石微晶玻璃具有柱状互锁显微结构,其弯曲强度接近300Mpa,断裂韧性高达5.0Mpa·m.
当平衡相沿着各种亚稳相的界面形成时,便产生了典型的孤岛结构。在存在莫来石晶体和残余玻璃相的硅酸铯微晶玻璃产生的铯榴石晶相就具有孤岛显微结构。
几种微晶玻璃的晶相如顽辉石、钙长石和白榴石在冷却过程中发生结构转变,生产聚合孪晶,生产一种能够提高断裂韧性的片状孪晶显微结构。顽辉石开始形成原顽辉石,当冷却到1000℃时,顽辉石发生马氏体相变转变位斜顽辉石,顽辉石颗粒高度孪晶化。由于这种孪晶片显微结构可以使裂纹偏转吸收能量,使这种微晶玻璃具有最高的断裂韧性,平均约5.0Mpa·m,并具有很高的弹性模量。
东莞市鸿希玻璃智能科技有限公司
东莞市鸿希玻璃智能科技有限公司 Copyright © 2018 版权所有 【百度统计】
技术支持:东莞网站建设 [BMAP] [GMAP] [后台管理] 访问量: 粤ICP备17006028号-1
开关面板玻璃|潜水镜玻璃|石英玻璃|高硼硅玻璃|东莞钢化玻璃|东莞微晶玻璃|东莞有机玻璃|家电玻璃

小程序小程序

手机网站二维码手机网站

公众号公众号

在线咨询